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ON THE SINGULARITIES OF CONTACT FORCES IN THE 
BENDING OF PLATES WITH FINE INCLUSIONS* 

O.V. ONISHCHUK, G.YA. POPOV and P.G. FARSHAIT 

A number of problems on the bending of plates with thin inclusions that 
are distinguished by the conditions attheinclusions is examined. The 
problems are reduced to systems of integral equations whose characteristic 
part has the following form in the general case 

LTE 
', (t--T)2 
s [ 

sgn(t -T) 
2" l t&n ,,',, - 2 1 cp (r)dT = f(t) -1 (0.1) 

Special cases of equations with the characteristic part (0.1) have been examined earlier 
in /l-4 /, where the solution ~(7) was sought,in the class of functions with non-integrable 
singularities by using the apparatus of regularization of divergent integrals /5/. It should 
be noted that V.M. Tolkachev first drew attention to the absence of solutions with integrable 
singularities in such problems. An exact solution of (0.1) is constructed below using the 
method employed in /6/, which provides a rigorous foundation for the approach utilized in 
/l-4/, and also enables us to find the exact form of the singularities for the problems 
considered in this paper. 

1. Formulas for the limit values of the fundamental quantities on a slit. 
We consider a rectangular (]s]<sa, = u/2, O<yQ b) hinge-supported plate within which 
there is a defect on the segment y = I= b/2, Iz I< cl-cc/2 that causes a break in the continuity 
of the fundamental quantities /l-3/ 

<m> = 0J (z), <m;> = x (z), <Ml/> = p (z), <VU> = cp (z) 

<f>=f(z, Z-0)--f(S, Z+O), o=x=p=*zO for 

s<lzI<s, 

(1.1) 

A thin absolutely rigid inclusion can be such a defect, for instance. To simplify the 
discussion, we will consider the load applied only to the inclusion, and the plate deflection 

w (5, Y) obtained during settling of the inclusion to be even in z. Then the function 
satisfying the equation A2w=0 for y#l and the boundary conditions w = M,= O(Z = &-a,), 
w = M, = 0 (y = 0, b), can be represented in the form 

Yk (Y) = Akshay + Bk aychay lo,< y< I) 

Yk (Y) = ck .& a (b - Y) + Dka @ - ybha (b - Y) (2 <Y < b) 

(W 

Realization of the conditions (1.1) resultsin the expression of Ak, Bk, ck, Dk in terms 

of 0, x, pL,$. As is shown in /3/, it is more convenient here to go over to the functions 

$0 (5) = 0"' (5), $1(E) =x" (E)? 9a (5) = p' (E), $3 (f) = 9 (E) (1.3) 

which results in identical principal parts of the kernels in the systems of integral equations 
obtained below. 0bviously:the functions $r and q,s are even while q0 and & are odd. 

Representation (1.2) enables the limit values for w, lo;, 
for y = I* 0. 

M, and V, to be found easily 
As in /3/, it turns out to be more convenient to go over to the primitives 

of the quantities mentioned. We have 
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Let us isolate the principal parts of the integral operators obtained in (1.4). To do 

this,the asymptotic form xi1 = 1 + 0 (phemzPk) should be taken into account and the following 
formulas should be used: 

with the constant of integration determined from the asymptotic form as z-+0 and separation 
into real and imaginary parts in the equation obtained. It should be noted that the series 

i s wsrax= k=lz ,.. I [* iql (6) - 

39. I 

cOs “i;*- f, (wio1po (f) + WlZ~Z (EN] d% 

is SM,(~X)~= jJ 5 [t_Sine~~S-E) i*z(g)- 
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xJ2=cthp-- sh'p ’ xm=cthp+l-YP 
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2 
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2 _.__q cos kt 
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m 

E 
p-1 - 1 

(2n f2)12n B,,P”+z (Itj<n) 
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Formulas (1.5) are obtained by triple integration of the equations (/7/, 415.06) 

c eikr _ i 

--2r 
k=l,S. b.. 

=-+(++ 2 2(2;;r;!_*)B,22"-l) 

n=4 

(1.5) 

(W 

on the left in the initial equation is divergent and is Abel-summed. Term-by-term integration 
of the series is hence allowable and results in a convergent series. 

Taking (1.5) into account we rewrite (1.4) in the form 

w(z,ZfO)= ': (=--V 
s -7-P Sgn(;- 5, $0(E) + 

+n &(slWr(8) - iri$a(E))]dE f RO (5) 

i wy’dx= S 
ct (z - 5)s 
s - [ T Sgn(l - ‘) i$l (E) + 

-&III & (Wkl(5) f m#2 (5)) ] d% + a(4 

i 1 1 M, (dx)* = Jc q [F “* 5 - ‘) i$z (E) f 

+ln--- ,& ;- t1a(%)-si4k(%))]d% + R2C.4 

SSS v, (dx)S = c: (z - 4)s 5 T[f sy-Q ~s(E)f 

&c;ih% (5) -s&h(f))] dE + Rs tx) 
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where integral operators with infinitely differentiable kernels are included in R,(x). We 
note that (1.6) is fairly general in nature since a change in the boundary conditions and the 
shape of the plate itself will result in a change in only R,(X). 

2. Formulation of the problem and derivation of the integral equations. 
Different kinds of defects are defined by combinations of boundary conditions on the slit edges 

y= zzto, 15 I<Cl. Starting from the fundamental boundary conditions of the theory of plate 
bending: clamping, support, and a free edge and considering the case in which the function 

$3 (f) is unknown, we obtain the following problem on the bending of plates with thin inclusions. 

Problem 1.1. We consider both edges of the slit in a plate connected rigidly to the 
inclusion i.e., the conditions of plate clamping in the inclusion w = W,(x), W; = WI(x) are 
satisfied for Y = If 0, 1 x 1 <cl. In this case $Po(E)s$l(E)z 0 and the problem reduces to a 
system of two integral equations in qa(5),qIs(5) 

- c? (2-W I* 
s 2n &+(E)G= 4D(Wo(x) - ROW) (2.1) 

--ci 
A?&, & i+(&)clE= 4D( is WI(X)~X- RI@)) .(2.2) 

-C, 

Problem 1.2. The slit edge y = l-0 is rigidly connected to the inclusion and the 
clamping conditions w = W,(X),W,' = w,(x) are satisfied on it. A break in the plate occurred 
along the edge y = 1 + 0 and between the plate and the inclusion a hinge was formed. Support 
conditions w = W,(x), My = M(Z) are satisfied on this edge. Then %o(E)= 0 and the problem 
reduces to the system 

c! (2-W In 
s 

(._:, [ 

&+&r(E)-Wa(5))dE = W,(X) --Ro (X) 

-c, 

j I 
4 Sga(;-') i91(E)+~In~r~~'(S)]dt= 

-c, 
i 

s 
W,(X) dz - RI (5) 

% (z-f)* 

I 7[- 
sgs(l-4) i$X([)-&J~+Q-(ti(E)+ 

--e, 
sia f))]d~.=i 1 S M(X)(dX)'-RR,(X) 

. 

Eq.(2.3) is of the same type as (2.1) and (2.2). Executing the combination 
- i (2.4), + ir, (2.5), we arrive at the equation 

j *( *nt-E) --&&)H(E)4=f(z) 

--c, 

H (8 = cpl (E) + r9Pa (8 

(2.3) 

(2.4) 

(2.5) 

s1 (2.3~ 

(2.6) 

&(E) and &(E) are found as even and odd components of the functions H(Q), while &(E) is 
found from (2.3) after determining *r(E). 

Problem 1.3. The slit edge y = Z-0 is rigidly connected to the inclusion, and 
clamping conditions w = W,(x), w; = W,(x) are satisfied on it. Delamination of the plate 
from the inclusion occurred along the edge y = 1 j-0 and a crack formed. Free edge conditions 
My= M(x), V, = V(x) are satisfied on this edge. This problem was examined in /3/ where it 
is reduced to the integral equation 

H (&) = qpo (E) + irpl (8 - r~h-“* @Pa (8 + $3 (EN 

Problem 2.2. A break in the plate occurred on both edges of the slit and the support 
conditions are satisfied. In this case qPo(&) =qpI (E)= 0 and the system of equations in 
$I(&), '#a(E) is analogous to system (2.1) and (2.2). 

Problem 2.3. A beak occurred on the edge y = l- 0 and the support conditions are 
satisfied, delamination occurred on the edge y =1 +0 and the free edge conditions are 
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satisfied. The problem reduces to a system analogous to (2.3)-(2.5). 

3. The case of an inclusion located on the boundary, We consider a rectangular 
plate (1.~ j<a,,O<y< 1 =b/2), hinge-supported on three sides 2 = *tar and y = 0. The 
side y=l adheres to a rigid rod, which results in mixed boundary conditions 

w(x, I- O) = WrJ (r), m;(r, z--Of= W,(r) (JrI<cJ (3.1) 
My (z, I - 0) = 0, v, (z, 1 - 0) = 0 (cl < I z I< UJ (3.2) 

We use the representation (1.2) for O< y< 1. Introducing the unknown functions &(x) = 
V, @,I - O),*,(z) = p’ (s), p (r) = Mp (z, I - O), for 15 I< Cl, we express Ak, Bk in terms of 
them. Realizing conditions (3.11, we arrive at the system of integral equations 

“* z$, ‘) &&a(%) + "os'$L, ') &g~(%)]d%= 
I =1.3,6..., --c, 

s 
W,(z)dr 

br= (i-l-v)(3+?J) &=A&= 3(3+v)thP 
zth'p+1+Y ’ L2thap+l+v 

2wp--13-v 
?%3=(3+v) 2~~~_+.,*+~ 

which can be rewritten in the form 

Forming the combination i (3.4)-(3.51, we arrive at one equation 

( v [(it_ v) Sgn~-Sf +&In &] ff (%)dE=f(4 
--c, 

H(%) = 3% (%I t 93 (E) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

It is seen that Eq.CO.1) is characteristic for (2.11, (2.21, (2.6), (2.7), (3.61, and 
therefore, the form of the singularities of the functions Jri (%),H(%) as %+fc, will be 
the same as the function q)(r) as z-r fl. 

We will now construct the exact solution of (0.1) which enables these singularities to 
be isolated in explicit form. 

4. Cauchy-type integrals with density having a non-integrable singularity. 
We write the density in the form rp(r)=(l -r)'(1 + r)' cpo(7), where mom H (satisfies the 
Rdlder condition), qPo(fl)fO. We let H* denote the class of functions with integrable 
singularities, i.e., those for which RB(JL,Y)> --1, and H ** the class of functions for which 
at least one of the numbers Rep,Rev is not greater than -1. 

Assuming that f”(t)E H and differentiating (0.1) three times with respect to t, we 
have 

’ rp CT) w(t)++ S zd~=f”‘ft) (ftl<~) 
-1 

(4.1) 

The solution of this equation in the class H* is known /6, 8/; however, it cannot be 
the solution of (0.1) giving a function differing from f(t) by a polynomial of second degree 
on the left-hand side of (0.1) in the formulation. In order for this polynomial to vanish 
it is necessary to have three arbitrary constants in the solution of (4.1), while the 
homogeneous equation corresponding to (4.1) has only one linearly independent solution in 
the class H+. This reasoning indeed prescribes the emergence into the broader class H**, 

where as is shown below, any necessary number of linearly independent solutions of the 
homogeneous equation can be obtained. 

In order to carry the scheme of the solution of (4.1) used in /6, 8i over to the case 



cp b) E H**, we shall understand the Cauchy-type integral 

in the regularized sense /5/ and the integral in the Cauchy principal value sense 
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(4.2) 

(4.3) 

It can be shown* (*Gribnyak S-T., Onishchuk O.V. and Farshait, P.G., Solution of an 
integral equation with a principal kernel in the class of functions with non-integrable 
singularities. Dep. in UkrNIINTI, No.1199, Odessa, July 11, 1984) that the function 0((z) is 
here analytic outside the contour [-l,ll, behaves as 0((1 -z)“*) as 
0)), 0 ((1 + z)v*) as z = -> -I@, = min (Re v,O)), O(z+) 

z-+1(p* = min (Re I", 
as z--f 00 and has limit values on (--1,i) 

for which the Sokhotskii formulas are satisfied 

0+ (t) - @- (t) = 'p (t), @,+ (t) + @- (t) = 2@ (t) (4.4) 

5. Solution of the Riemann problem and singular integral equations in the 
class with non-integrable singularities. We consider the equation 

1 

=9 @) + 4 s -++7=z(t) (Itl<l) 
-1 

(5.1) 

We seek the solution in the class of functions m(t)= (1 - t)‘(l + t)vqo(t),. where p,v 
satisfy the conditions 

-m-l<Rep<-m,-n-l<Rev<-n (5.2) 

and m, n are integers. Following /6/, (p.176, 482) we consider the function (4.2) where 

cp (7) is the solution of (5.1). Then on the basis of (4.4), D(z) will be a solution of 
the Riemann problem 

Q+ (t) = G (t) m,- (t) + g (t) (-1 < t < I), 0 (co) = o (5.3) 
Q (2) = 0 ((1 - zp*) as z-+1, @(z)=O((l+~)~*) as z+-1 

G(t) = s = G = con&, g(t) = + 

The inverse can also be proved (see the footnote): for any solution of problem (5.3) the 
function 'p (7) = O+ (T) - W (z) will be a solution of Eq.(5.1), where taking m> 1, n> 1 in 
(5.2) we obtain the solution m(7)in the class H**. 

Following /6/,Sect.43, /E/,Sect.26, we consider the function 

X(z)= (1 - z)+“’ (1 + z)@-“-1, p = - +$ , arg G E (- 2n, 0) (5.4) 

which is analytic in a plane with the slit [-l,lJ, satisfies the homogeneous condition 
X+(t)= GX-(t) and behaves as 0 ((1 - Z)P) as z * 1, 0 ((1 + z)“) as z + -1, and 0 (z-x) as z -+ 00 
( p and Y satisfy conditions (5.2), x = m + n + 1). Then the function 

w=+#-Y(z), vqz)=& 1 R(r)L x+ (Z) z-z 
-1 

(5.5) 

is regular in the whole z plane with the exception, perhaps, of the points f 1. We consider 
two cases used in solving (0.1). 

Case 1. If m>-l,n)-1 in (5.21, then the points z = Ifrl will be eliminable 
singularities for the function F (z) and by Liouville's theorem E (z) = P,, (z) is a poly- 
nomial of degree x - 1. The the solution of problem (5.3) has the form 

0 (z) = X (z) (u' (z) + p,-r(z)) (5.6) 
and contains x arbitrary constants. 

The value x = 3 required in Sect.4 can be obtained by taking any m and n = 2 -m in 
(5.2). However, the condition of convergence of the energy integral of a bent plate imposed 
from mechanical considerations results in the single set m = n = 1. It can be shown (see 
the previous footnote) that the condition of plate clamping at the ends of the inclusion (the 
continuity of w, w'x, WY' at these points) is also satisfied here. 

Using (4.4) and (5.6), we find the solution of (4.1) in the class H** for which 
-2<Rep<-I, -2<Rev<-1: 
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-1 k=o 

(5.7) 

x,* (t) = (1 - t)-‘+ (1 i_ t)-2+8 

where up are constants determined later from system (6.5) obtained on substituting q(t) into 

(0.1). 

Case 2. On substituting (5.7) into (0.1) below, the question will arise of the solution 
of (5.1) in the class of functions for which 

1<Re~(2,1<Rev<2,m=n=-2, x=-3 W) 

and about the conditions imposed on s(t) for solvability in this class. 
In the case under consideration, the function (5.5) can have poles of multiplicity one 

at the points 2 = f 1 ; then the solution of problem (5.3) and Eq.(5.1) will take the form 

CI, (2) = x2 (2) (Y (4 4- qgy -I- *) (5.9) 
Xa (2) = (1 - 2)“” (1 f 7p 

cp @I ==“$g i*(t) + & f “I-) 1+t (5.10) 

X2+(t) = (1 - ty-@ (I + t)l+@ 
1 

q(t)=a&--& 5 SOL, CR=--2(a+b)bBk X,+(r) r- t 
-1 

under the following necessary and sufficient conditions associated with the requirement 
@(a)= 0: 

I 

s 
s (+x2+ (q-1 ddt + B$ - (- i)j Bz = 0 (5 = 0,1,2) (5.11) 

--f 

In general, if s(t) satisfies just the Balder condition, then as t-t & 1 q((t)can become 
ofanorder,higherthan the first at infinity, and conditions (5.8) wil.1 not be satisfied for 
any selection of C1 and C,. Below s(t) = f (@and s"' (t)E fi. Then by the Taylor formula 
s(t)= P%*(t) + o((1T t))2) in the neighbourhood of the points t = f 1. The function *c(t)== 
rx** (W'P, (1) is the solution of the homogeneous equation 

(5.12) 

which is conjugate to (5.1) f"'(t)=0 in (5.7) and @ is replaced by 1 - @, Xl+ (t) by [X,+ (t)l-I), 
consequently, the function Ir,(t) will be bounded as t-t f 1. Setting C, = C, = 0, we obtain 
that when the condition 

i s(~)[X2+(T)]-'7~ds=O (i=O,1,2) (5.13) 
-1 

is satisfied, Eq.CS.1) has a solution satisfying (5.8). Obviously (5.13) is the condition 
of orthogonality of the right-hand side of (5.1) to the solutions of Eq.(5.12). 

6. Solution of the integral equation (0.1). We write (5.7) in the form 

9, @) = ---T-- 
@$p + X,‘jl)~U$~ 

k==o 

gs(t)=af(t)---$X2+(t) j -..LiZLd7 x*+(T) 7-f 
-1 

(6.4) 

We have here used the formula 

which is confirmed by taking into account (4.1.6) /6/. Formula (4.16) /6/ as well as the 
formulas (3.141, (3.15) /6f used in its derivation hold even in the case when q'(t)C!Z?ZH** 
if formula (1.6) /l/ is taken into account. 
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We substitute (6.1) into the left-hand side of (0.1) 

(6.2) 

using formula (1.6) /I/ and (A.6.7) /2/, we calculate Qk (t)= b& -k-&kt i- bok 

Qo(t) = k$.i ta - yt - m++ 
q,(t),~ta-(~-a_t6)t+~(2+a$-6) 

Q~(t+(~+$)tz-(i-2f9c-i_~+8)f- 

i+ 
lqE++ ($ - $ (i - 2fv + -&} 

~zz-.-- ; nctgnB-(tn2+21(1-B)-9(1)), Y= @y:;, * 

S=@-2&y 

Since gs'"(r) is the solution of (4.11, then 

LgsR' = f (t) - A# - Art -A,! (6.3) 
To find do,dl,d, we integrate three times by parts on the left-hand side of (6.3). 

Taking account of the behaviour of g," (t), gs' (t), g, (t) as t-r- & 1, and (1.6) /l/, the components 
outside the integral vanish and (6.3) takes the form 

Since g*(t) is the solution of (6.41 in the class (5.8), #en the right side of this 
equation satisfies conditions (5.13) and At axe found successively from the equations 

i drli+j= 1 ~(t)~X~+(t)~-‘t’~ (f=O, 1,2) 
Id&-+ -1 

Rewriting (6.2) in the form 

@--f(t) +,& j~$&J#% - dt)t' 

we arrive at the conclusion that in order for (5.7) to be a solution of (O.Ii.1, it is 
necessary and SUffiCient that ah satisfy the set of equations 

(6.5) 

Formulas (5.71 and (6.5) yield an exact solution of the characteristic Eq.(O.l). For 
an approximate solutionoflthe complete equations obtained.inSects.2,3,itis convenient to use 
the method of orthogonal polynomials /2/, by writing the desired function in the form 

m 
cp (t) = (1 - t)- (1 _t Q-*+6 H cp,p, (t) 

P,(t) = P;--*+8 (t&t 2 1). PO (t) = 1 - t* 

and using expressions for Q*(t) for n,<2 and the spectral relationship (see the previous 
footnote) for n >2 

(6.7) 

The singularities of the contact forces @a(E) at the ends of the defect are determined 
by the value of fi in (5.41, (5.7): for ~-+fcI~i +a(@=Q((c,T;i:E)-^Y), Y=*-l-B when RefiE 

10.5; I), y = 2 - @ when Re fi E (0;0:5J. Let us mention the values of fi for the problems 
considered above. In Problem 1.1 (total adhesion of the plate.to the inclusion) fi = fill. = 0.5 
in Problem 1.2 (a break at one of the edges) @ = & = 0.75, in Problem 1.3 (delamination along 
one of the edges) p = &a, in the problem in Sect.3 (an inclusion on the boundary) B = Bs 
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Calculation of the determinantD @) of system (6.5) by using /9/ yields the following 
values for Y = 0.3, which ensure that the system is solvable D (~~,)~O.~g~,D (&) z 0.5876, 
L) f&)~ 0.1498, D (&af ;=: -0.3359 + O.3283i. 

The presence of an imaginary part in $r3 and & shows that the contact forces in the 
last two problems contain oscillatory factors in addition to non-integrable singularities. 
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ON THE INVERSE PROBLEM OF THE SCATTERING OF 
ELASTIC WAVES BY A THIN FOREIGN INCLUSION* 

V.F.YEMETS 

The problem of the remote determination of the shape of an isolated scatterer 
is considered using longitudinal elastic waves. It is assumed that the 
scatterer is a thin elastic solid of revolution situated in an elastic 
space under conditions of rigid contact and that Poisson's ratios of the 
medium and the scatterer are the same. The use of multifrequency wave 
information is a special feature of the solution of the problem. The 
problems of the uniqueness and stability of the solution obtained are also 
studied. 

We mean by the inverse scattering problem the problem of determining 
the form of the scattering region by analysing the scattered field. The 
problem, as a rule, is one of a number of ill-posed problems of mathematical 
physics /l/. The current interest in developments in this direction is 
caused by the practical needs experienced in such fields as acoustic 
diagnostics, geophysics, hydroacoustics, medicine, etc. At present 
several approaches to the study of the form of closed isolated scatterers 
are known /2--4,'. Here the corresponding direct problem of mathematical 
physics was formulated as a boundary value problem for the Helmholtz 
equation with Dirichlet boundary conditions and Newmann or impedance 
boundary conditions on the unknown surface of the body whose location was 
being determined. 

*Prikl.~4atem.Mekhan.,50,2,303-308,1986 


